Sub-gaussian Tail Bounds for the Width and Height of Conditioned Galton–watson Trees

نویسنده

  • LOUIGI ADDARIO-BERRY
چکیده

We study the height and width of a Galton–Watson tree with offspring distribution ξ satisfying E ξ = 1, 0 < Var ξ < ∞, conditioned on having exactly n nodes. Under this conditioning, we derive sub-Gaussian tail bounds for both the width (largest number of nodes in any level) and height (greatest level containing a node); the bounds are optimal up to constant factors in the exponent. Under the same conditioning, we also derive essentially optimal upper tail bounds for the number of nodes at level k, for 1 ≤ k ≤ n.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Conditioned Galton-watson Trees

We give a necessary and sufficient condition for the convergence in distribution of a conditioned Galton-Watson tree to Kesten’s tree. This yields elementary proofs of Kesten’s result as well as other known results on local limit of conditioned Galton-Watson trees. We then apply this condition to get new results, in the critical and sub-critical cases, on the limit in distribution of a Galton-W...

متن کامل

Local limits of conditioned Galton-Watson trees: the infinite spine case

We give a necessary and sufficient condition for the convergence in distribution of a conditioned Galton-Watson tree to Kesten’s tree. This yields elementary proofs of Kesten’s result as well as other known results on local limits of conditioned Galton-Watson trees. We then apply this condition to get new results in the critical case (with a general offspring distribution) and in the sub-critic...

متن کامل

Local Limits of Conditioned Galton-watson Trees I: the Infinite Spine Case

We give a necessary and sufficient condition for the convergence in distribution of a conditioned Galton-Watson tree to Kesten’s tree. This yields elementary proofs of Kesten’s result as well as other known results on local limits of conditioned Galton-Watson trees. We then apply this condition to get new results in the critical case (with a general offspring distribution) and in the sub-critic...

متن کامل

The Width of Galton-Watson Trees Conditioned by the Size

It is proved that the moments of the width of Galton-Watson trees of size n and with offspring variance σ2 are asymptotically given by (σ √ n)mp where mp are the moments of the maximum of the local time of a standard scaled Brownian excursion. This is done by combining a weak limit theorem and a tightness estimate. The method is quite general and we state some further applications.

متن کامل

A note on the scaling limits of contour functions of Galton-Watson trees

Recently, Abraham and Delmas constructed the distributions of super-critical Lévy trees truncated at a fixed height by connecting super-critical Lévy trees to (sub)critical Lévy trees via a martingale transformation. A similar relationship also holds for discrete Galton-Watson trees. In this work, using the existing works on the convergence of contour functions of (sub)critical trees, we prove ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010